
N88-19122 I

DESIGN MODELING FOR SHAPE OPTIMIZATION

M.E. Botkin

Engineering Mechanics Department

General Motors Research Laboratories

Warren, MI 48090-9057

ABSTRACT

Some important aspects of design modeling for shape optimization

will be discussed for both stamped sheet metal components and cast

solid components. For stamped components the basis for the model-

ing approach is a boundary design function. Design parameters

control the shape of two-dimensional regions. For more complex,

folded plate components, the two-dimensional regions can be

assembled using translation and rotation operations. The analysis

model is automatically created using a mesh generation procedure

requiring only boundary data. For less complex solid components,

it was found that this approach is not suitable. For these struc-

tures, the finite element models are typically created using very

sophisticated graphical modeling systems. A new approach which

overlays a parameterized surface design model on an existing

analysis model is described. To summarize, the future needs for

solid shape design will be described in terms of an extension of

the previously described two-dimensional capability.
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ABSTRACT

Modeling three-dimensional automotive components for

shape optimization is described. Shape optimization differs
from sizing optim_ation in the type of structure, type of de-
sign variable, and sensitivity analysis employed. The key el-
ement of the shape optimization design model is the parame-
terization of the geometry by which the opt;m;,e_ controls the
structure dimensions. Efilcient generation of the design model

is very critical in the design process. A quick generation of a
good optimization model combined with an et_cient optimiza-
tion system will result in a drastic design time saving. In this
paper, three approaches to generating the design model are
discussed. Emphasis will be placed upon a special modeling
technique which overlays the design model onto an already ex-
isting finite element model. This technique is incorporated in
a modular three-dimensional shape optimization system which
uses NASTRAN for analysis. A realistic automotive steering
control arm is used as an example to demonstrate the use of
the technique.

INTRODUCTION

Optimization techniques have emerged as usof_ design
tools in recent years. Structural optimization for sizing vari-
ables has been treated extensively in the literature. The prob-
lem of designing the shape of a structure for minimum ms_
constitutes another important class of optimization problems.
Shape optimization difers from sizing opthn_ation in sev-
eral ways. First, sizing design variables are generally dimen-
sions which do not affect the geometric configuration of the

structure, such as cro_-sectional dimensions of beam mere-
hers (thickness, width, height, moment of inertia, etc.). Shape
design variables define the geometry of two-dimensional plate
and three-dimensional solid structures. As a result, shape de.

sign sensitivity analysis is much more complicated. In shape
optimization, the boundary of the structure is variable, so pa-
rameterization of the geometry is the most important aspect
of the shape design model. Modeling for shape optimization
is more difllcult because both the analysis and design rood-

el- must completely describe the structure geometry. The de-
sign and analysis models for sizing opt_ation are inherently
loosely coupled because there k little duplication of informa-
tion. For an existing large analysis model whose surface is not
parametrized, generating the design model is not trivial.

In the past, most efort has been put on shape design sen-
sitivity analysis and most problems solved are limited to two-
dimensional problems [I-4]. The importance of automatic cre-
ation of the design model was seldom found in the literature.
Botkin at. al. [5] used computer graphics to generate shape
design modek for two and three-dimensional stamped struc-
turin. Only a limited amount of work has been aceomplkhpd
in three-dimensional shape optimization using solid _Luite ele-

ment analysis [_-7]. Refa. 6 and 7 generated design modek
manually and as a result, only simple geometries (cantilever
beam, engine bearing cap, etc.) were optimized. ROf. 5 used
an automatic mesh generator to create the design model and a

more complicated engine connecting rod was optimized. How-
ever, connecting design variables to the geometry was still done
manually. In the real world, three-dimensional problems are of-
ten complex and require large finite element analysis models.
To be most elective in impacting the design process, the de-

sign model must be efllciently generated through an interface
to a CAD system.

Many graphics oriented finite element preprocessors are
•available which can generate very complex finite element mod-
els. Unfortunately, these models cannot be used directly for

optimization, since they offer no means of parameterizing the
shape of the structure. Ideally, for shape optimization, the de-
sign and analysis models should be generated simultaneously
using a CAD system. An alternative to this approach is an
optimization system which generates the analysis model auto-
rustically from the the design model description of the struc-
ture. The major disadvantage to both approaches is that the

!present state-of-the-art in mesh generation is not of a level
'where they would be robust enough to function in a real world
design environment. However, finite element analysis is an
accepted and established part of the design process. For



mediate impact, a shape optimization system should be able
to take advantage of this fact. Hence, the third approach to

design modeling which is presented in this paper is one which
an already existing finite element model ,m the basis

the geometry description. A parameterization of key dl-

mensions, edges, and surfaces is then overlayed on the finite
element mesh.

In this paper, different design modeling approaches are first

discussed. A new approach which can handle large-scaie prob-

lems initially generated as analysis problems only is presented.
A steering control arm is used as an example to demonstrate

the use of the design modeling approach.

DESIGN MODELING APPROACHES

When evaluating any modeling approach, the robustness

of the technique and the dimculty of integrating the system

into the design proem are the two major criteria. A robust

design model will be general enough to include every pmaible
shape which will satisfy the design constraints. At the sane

time, the constraints must be flexible enough to eliminate the

consideration of any impractical designs from a manufacturing

standpoint. It is also important that the coupling between the

design and analysis models be of a nature that maintains the

integrity of the finite element analysis through the iterations

of the optimization process.

Two design modeling approaches were found in the litera-
ture: a boundary design element concept, and a design element

approach or a generic model approach. The present approach

di_ers from both of these in that they both use some form of

generation while our approacJ_ uses mesh manipulation.

The boundary design element concept was _ret proposed

by Bennett and Botkin IS] for two-dimensional plates and

by Botkin and Bennett [9] for three-dimensional folded plate
structures. The basic idea of this approach is to parameterize

a boundary seSment with several design variables, a_mble all

segments to form the whole part, and generate a finite element
mesh within this boundary. The key to the success of this ap-

proach is the availability of a two-dimensionai fully automatic

mesh generator [I0]. With this capability, a more advanced

step which considm the accuracy of finite element analysis

with mesh refinement was made possible [S]. This approach is

probably the most robust and attractive as the creation of the

finite element mesh is transparent to the designer. However,

the boundary description format cannot be extended to three-

dimensional solids beeatme a fully automatic mesh generation

[11] which relies on mzrface data is not developed to the point

where it can be routinely nsed in an automated fashion.

The design element approach for two-dimensional elastic-

ity problems was first used by Botkin ) [15] and also used

by Bralbant and Fleury [15], who employed Besier and B-

spline functions for boundary geometry. The design element

or generic modeling scheme for three.dimensional shape opti-

mization was used in Refs. 5-7. This approach can be thought

of as a volume design element concept. In this approach, the

geometry is described by design elements whose key dimensions
are associated with the geometric design variables. The finite

element mesh for analysis is then generated within each design

by an iaoparametric mapping technique. The advan-

tages of this approach are that no discontinuity exists at the

element interface, relatively few design va.'iables are needed,
and interior points are automatically adjusted when a bound-

ary moves. The main disadvantage of this method is the tel-

atively inflexible mesh generation scheme. Mesh gradation is

completely controlled by the number of generic elements and

the mapping technique used. Since the generation technique

creates a very uniform mesh, refinement in a local region can
only be accomplished by adding more design elements. For

complex geometries which cannot be modeled with a coarse

mesh, the density of the generic model quickly approaches that

of the analysis model. In erect, the designer has to generate

a full-scale finite element model anyway. With increased com-

plexity of the mesh, the number of necessary design variables

also increases. Although the finite element mesh generation is

largely transparent in this approach, the quality of the mesh

may not satisfy the designer who is used to generating finite

element modek with a graphics preprocessor. One other draw-

back to this method is that the designer will be restricted to

using the finite element types permitted by the mesh generator.

PRESENT APPROACH

In the present approada, the original finite element model

is employed as the basis for the design model. There is a one-

to-one correspondence between the finite element analysis and

design model geometry descriptions. That is, the node num-
bers and locations for both models are identical. The design

model attaches design variables to the node locations stored in

the analysis model. As the optimizer changes the design, the

analysis model is updated to refiect the change in node coor-
dinates, and the design model is updated to reflect the change

in the design variables.

All the additional data needed to describe the shape opti-

mization model is stored in a single DESIGN file. The present
model contains two key elements. The first is a list of design

variables with upper and lower linlits. When the optimiza-

tion is performed, the design variable vector moves toward Be

optimal design. The second key element of this model is the

type of geometric operators which give these numbers physical

significance by relating them to actual part dimensions. This

is done by manipulating the coordinates of the nodes which
describe the finite element mesh. Three types of operators are

included in the design model. LINK functions form the most

direct relationship between the design variables and the part
geometry. Each LINK function references a design variable

or a linear combination of any number of the design variables

as specified by the nser. This dimension is then used to po-
sition a lkt of dependent nodes relative to some independent

reference. The type of reference depends on the type of LINK

function specified. For example, if a cylinder function is nsed,

all the dependent nodes are positioned relative to an axis. Un-
like LINK functions, POLY and GRID functions do not ex-

plicitly reference design variables. Therefore, they allow the

designer to minimize the number of design variables necessary

to completely describe a problem. Like LINK functions, both

of these functions position nodes in a specified list relative to

some independent nodes. POLY functions do this by putting a

polynomial curve through the independent nodes and interpo-

luting the dependent nodes onto it. GRID functions set chosen

coordinates of the dependent nodes to a value determined by

a linear combination of the independent node coordinates.
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Themosttime-consumingsadtediouspartof this ap-
proachislocatingandidentib/ingtheindependentsaddepen-
dentnodesusedin thegeometric functions. To expedite this

process, an interface with a CAD system should be developed.
With such a graphical system, the business of determining and

attaching the node labels to the geometric functions would be

transparent to the user. The designer would have to select the

nodes graphically off the screen, while the computer internally

stores the appropriate numbers and builds the DESIGN file. A

key feature of the shape design modeler, which will be imple-
mented in the future, is the ability to animate the geometric

functions. This will allow the designer to instantly see the

effect changing an individual design variable has on the part

geometry.

The main advantage of this method k that it is applicable

at any point in the design process. The designer does not have

to sacrifice the time already invested in building the analysis

model if he decides to run an optimization. Also, this method
has been shown to work ¢_ real problems with technology that

is currently available.

MODULAR SYSTEM FOR SHAPE OPTIMIZATION

The design modeling technique described in the previous

section is incorporated with a three-dimensional modular shape

optimization system which uses MSC/NASTRAN for finite ele-

ment analysis [$,14]. The system flow chart is shown in Figure
I. Each step is an independently executable module. CONMIN

[15] is called as a subroutine from SENSTY. A fifth module

(not shown) forms the link between STEP 4 and STEP 1. Ter-
ruination is controlled by an iteration counter and can occur

after STEP 2 or alter STEP 4, as specified by the user. StepG
2 and 4 can be run independently to test the design model

without running an analysis. In STEP 1, a NASTRAN static

analysis is run using superelement formulation. The nods] co-

ordinates, internal/external node label list, and displacements
are written to an output file for use in the next steps. In STEP

2 (ADJLOD), stre_ and displacement constraints are evalu-
ated. For those constraints which are active, adjoint loads are

calculated. In STEP 3, each adjoint load is submitted as a

separate load case in a restart on the analysis performed in

the first step. Displacements from this analysis are written to

an output Rle and used in the next step to calculate sensitivi-

ties. In STEP 4 (SENSTY), the gradients of the cost function
and active constraints with respect to the design variables are

evaluated. This information k fed to CONMIN, which forms

Taylor series approximations of these functions and performs

an optimization to arrive at the next design iteration. The

grid coordinates are updated to reflect the new design vari-

ables. Then a Laplacian smoothing operation is carried out

on all interior corner grids to minim_e element distortion. Fi-
nally, the midside grids are linearly interpolated between theLr

respective corner grids, except those on the boundary surfaces

. The new coordinates and design variables are written to the

NASTRAN and DESIGN files, respectively.

STEERING CONTROL ARM

The forged steel steering control arm shown in Figure 2

was optimized. The arm is subjected to a single 9000 N steer-
Lug load applied through a ball stud as shown. Constraints are

applied around the strut tube on the upper and lower surfaces
of the arm to simulate the welds. The NASTRAN model con-

J STEP 1: NASTRAN _1 _ NASTRAN 1v I (actual loads) DATA BASE

STEP 2:ADJLOD r
(cost, constraints.

and adjoint loads)

,l
l STEP 3: NASTRAN RESTART L

(adjoint loads) [-

,L
._ STEP 4: SENSTY ](design sensitivity analysis I

and CONMIN optimization) I

Figure L System flow chart

slats of 190 HEXA elements, 6 PENTA elements, and 30 BAIt

elements (used to model the ball stud). There are 1497 grids

in the model which corresponds to roughly 4300 DOF. Young's
modulus, Poisson's ratio, and the allowable octahedral shearing
stress are 2.07xlOSJ_fPa, 0.3, and 250MPa, respectively. The

optimization model shown in Figure 3 uses 12 design variables,

31 link fim_..¢tions, 15 polynomial interpolating functions, and 21

grid link functions. The numbered arrows represent the design

variables. The lettered points are key node locations and the

dashed lines are movable boundaries. The design variables are

described in Table I. Design variable 5 is actually fixed, but is

needed to locate point F. Quadratic interpolation functions are

used to generate curves KLM, BCD, and FGH. Cubic Hermite

curves AB and DE form smooth transitions between BCD and

the outside radii at the ball stud and the strut tube. Only half

the model is shown in the XY-plane because it is symmetric

about the X-axis. Figure 4 is a partial listing of the DESIGN
file for this model. Three geometric constraints have been in-

eluded to prohibit the inside wall boundary from crossing the
outside wall boundary. The initial design is infeuible as the

Table I. Design Variables Description

Design Variable Description

1

2
3

4
5

6

7

8

9
I0

U

12

Floor thickness

Strut tube (MN) thickness

Midsection (L) thickness

Width of inside wail at ball stud (F)

Radius of inside wall of ball stud (fixed)

Width of inaide wall at midsection (G)
Radius of inside wall of strut tube

l_adins of fillet (H J)
Poeition of fillet radius center

Width of outside wall at ball stud (B)

Width of outside wall at midsection (C)

Width of outside wall at strut tube (D)

/



part had a high stresl value near the inside fillet radius at the

strut tube (Figure 2). The peak stre_ in the part violates the

strem conJtralnt by 87.5%. The initial ma_ k 615.4 g. After
iterations, the stre_ constraint8 were met and an 8_

savinp wu achieved (final mau of 566.5 g). Table 2

lists the initial and final values of the design variables -. well
u the limits placed on them. A comparison of the initial and

final geometries is given in Figure 5. The design histories of

the mmm and maxhnum stress constraint are shown in Figure
6.

STEERING LOAD

constrained iround

/W£LO[D TO STRUT TUBE

top and bottom

stress area _
initially Inf.sible __[

o

Analysis Model /._

9000N

Figure 2. Steerinl control arm

Table 2. Design Variables for Steering Control Arm

No. initial final lower bound upper bound

I 4.20 2.50 2.50 I0.00

2 20.00 20.00 20.00 40.00
3 20.00 22.12 II.00 40.00

4 8.97 8.64 2.20 17.00

5 20.75 20.75 20.75 20.75

8 15.86 17.95 2.20 26.00

7 34.30 30.46 30.40 40.00
8 4.00 5.72 1.00 10.00

9 15.29 11.30 2.20 18.00

10 18.61 19.00 4.20 19.00

II 21.98 22.26 4.20 30.00

12 26.21 25.46 4.20 29.00

unit: mm

,

[
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Figure 3. Design model for steering arm
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SUM]VLtLRY

Efficient creation of the the design model is crucial in three-
dimensimml shape optimization. In the ideal scheme, creation

of the analysis model is completely inter'steal into the desisn

model buUdh_ process, thus eliminatins any duplication of
efiPort. At the same time, no compromise should be made with

respect to mesh quality. For realistic three-dimensional parte,

this technology is not available yet. In this paper, a design
modeling approach was pr_ented which takes advante4[e of the

fully developed state of' finite element analysis model building.

In this method, the analysis model is the basis of the geometric

description. Building the design model consists of overlaying a

parameterization of the geometry onto the finite element mesh.

This method is applicable with present technology. It has been
used in a number of automotive component applications with

success, one of which was presented here.
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